- مدرس دوره : سید امیر آگاه ( رزومه )
- تعداد ویدیوها : 49 ویدیو
- مدت زمان دوره : 9:55:00
- سطح دوره : پیشرفته
- وضعیت دوره : به اتمام رسیده
- تاریخ آخرین بروزرسانی : 1402/04/13
دوره یادگیری ماشین با پایتون
در این دوره مطالب مورد نیاز برای استفاده از یادگیری ماشین با استفاده از زبان برنامه نویسی پایتون و کتابخانه های مطرح ان را فرا خواهیم گرفت. با توجه به مطالب تئوری و محاسباتی پیچیده ان , در طراحی دوره به نحوی عمل شده است که تئوری های لازم صرفا برای درک مفهوم ارائه گردد و بیشتر به اموزش نحوه بکارگیری ان پرداخته ایم. عزیزانی که مایل به فهم عمیق تر مطالب ریاضی ان میباشند میتوانند به مراجعی که در اختیار قرار میدهیم مراجعه نمایند. دوره طراحی شده دارای 3 زیردوره مقدماتی , متوسط و پیشرفته میباشد. در دوره مقدماتی به ارائه پیش نیازها و اموزش کتابخانه های مورد نیاز پرداخته و در ادامه درخت تصمیم و جنگل تصادفی و رگراسیون خطی اموزش داده می شود. در دوره متوسط متدهای دیگر یادگیری ماشین مورد اشاره قرار خواهند گرفت . دوره پیشرفته نیز اموزش مباحث تئوری و عملی شبکه های عصبی و یادگیری عمیق انجام میگیرد.
سرفصل های دوره:
معرفی دوره
اموزش نصب
مرور سریع پایتون
اموزش NumPy
اموزش Pandas
اموزش Matplotlib
اموزش Seaborn
مفاهیم Machine Learning
اموزش Decision Tree & Random Forest
اموزش Linear Regression
جمع بندی و توضیح مطالب دوره بعد
پیش نیاز های دوره :
- اشنایی و درک مفاهیم برنامه نویسی
- اشنایی با زبان برنامه نویسی پایتون (البته مرور مختصری بر موارد مورد نیاز خواهیم داشت)
فهرستـــ ویدیوها
مدت زمان دوره 9:55:00با مشاهده آنلاین جلسات در سایت ، هزینه اینترنت شما به صورت نیم بها محاسبه خواهد شد.
تمرین قسمت NumPy
در فایل اول (04_Numpy_Practice) تمرین لازم برای قسمت NumPy برای شما در نظر گرفته شده است . لطفا ابتدا سعی نمایید تا با توجه به دستور العملها , خودتان با دستورات فراگرفته شده انها را حل نمایید . در صورت هر گونه ابهام میتوانید از ویدئو این جلسه یا فایل دوم (05_Numpy_Practice_Solution) استفاده نمایید.
تمرین قسمت Pandas
در فایل اول (08_Pandas_Practice) تمرین لازم برای قسمت Pandas برای شما در نظر گرفته شده است . لطفا ابتدا سعی نمایید تا با توجه به دستور العملها , خودتان با دستورات فراگرفته شده انها را حل نمایید . در صورت هر گونه ابهام میتوانید از ویدئو این جلسه یا فایل دوم (09_Pandas_Practice_Solution) استفاده نمایید.
شروع Machine Learning
شروع یادگیری ماشین با پایتون - توضیح اجمالی نحوه نگارش کدهای یادگیری ماشین و استفاده از کتابخانه های مرتبط
آموزش پیاده سازی Linear Regression
بخش دوم - جلسه اول آموزش پیاده سازی Linear Regression با استفاده از پایتون
آموزش پیاده سازی Linear Regression
بخش سوم - جلسه دوم آموزش پیاده سازی Linear Regression با استفاده از پایتون.
تمرین و حل تمرین قسمت Linear Regression
بخش چهارم - در فایل اول (04-Linear Regression Practice) تمرین لازم برای قسمت Linear Regressionبرای شما در نظر گرفته شده است . لطفا ابتدا سعی نمایید تا با توجه به دستور العملها , خودتان با دستورات فراگرفته شده انها را حل نمایید . در صورت هر گونه ابهام میتوانید از ویدئو این جلسه یا فایل دوم (06_Solution_Practice) استفاده نمایید.
آموزش پیاده سازی Logistic Regression
بخش دوم - جلسه اول آموزش پیاده سازی مدل Logistic Regression با استفاده از پایتون در فایل ضمیمه دیتاست اطلاعات هواپیمایی Invistico_Airline و فایل کد پایتون برای اموزش این جلسه و جلسه اتی در دسترس میباشد .
آموزش پیاده سازی Logistic Regression
بخش سوم - جلسه دوم آموزش پیاده سازی مدل Logistic Regression با پایتون فایل دیتاست اطلاعات هواپیمایی و کد پایتون ضمیمه میباشد .
آموزش پیاده سازی Logistic Regression مثال دوم
بخش چهارم - آموزش پیاده سازی مدل Logistic Regression با استفاده از پایتون جلسه اول از تمرین دوم در ضمیمه فایل csv اطلاعات کشتی تایتانیک (titanic) و فایل کد پایتون قراردارد .
آموزش پیاده سازی Logistic Regression مثال دوم
بخش پنجم - آموزش پیاده سازی مدل Logistic Regression با استفاده از پایتون . جلسه دوم از تمرین دوم در ضمیمه فایل csv اطلاعات کشتی تایتانیک (titanic) و فایل کد پایتون قراردارد .
مفاهیم DecisionTree و جنگل تصادفی
بخش اول - در این بخش مفاهیم تئوری لازم برای درخت تصمیم و جنگل تصادفی را مرور خواهیم کرد.
آموزش پیاده سازی DecisionTree
بخش دوم - مثال اول آموزش پیاده سازی مدلDecission Tree با استفاده از پایتون . در فایل ضمیمه دیتاست بیماری دیابت diabetes_data و فایل کد پایتون برای اموزش این جلسه در دسترس میباشد .
آموزش پیاده سازی DecisionTree
بخش سوم - مثال دوم آموزش پیاده سازی مدل Decision Tree با استفاده از پایتون. در فایل ضمیمه دیتاست کشتی تایتانیک اصلاح شده , titanic_data و فایل کد پایتون برای اموزش این جلسه در دسترس میباشد .
تمرین و حل تمرین قسمت Decision Tree
بخش چهارم - در این قسمت فایل های تمرین (DecissionTree_Practice) و حل تمرین (DecisionTree_Practice_Done) و دیتاست مربوطه (loan_data) ضمیمه میباشد.لطفا ابتدا سعی نمایید تا با توجه به دستور العملها , خودتان با دستورات فراگرفته شده انها را حل نمایید. در صورت هر گونه ابهام میتوانید از ویدئو این جلسه یا فایل حل تمرین استفاده نمایید.
ادامه حل تمرین قسمت Decision Tree
بخش پنجم - در قسمت دوم حل تمرین فایل های تمرین (DecissionTree_Practice) و حل تمرین (DecisionTree_Practice_Done) و دیتاست مربوطه (loan_data) ضمیمه میباشد.لطفا ابتدا سعی نمایید تا با توجه به دستور العملها , خودتان با دستورات فراگرفته شده کار را ادامه دهید. در صورت هر گونه ابهام میتوانید از ویدئو این جلسه یا فایل حل تمرین استفاده نمایید.
نظرات کاربران در رابطه با این دوره