سلام استاد روز بخیر
وقتی میخوام کتابخانه keras رو import کنم انجام میشه و مشکلی نداره ولی وقتی میخوام از keras.models, Sequential رو import کنم ارور میده که چنین چیزی تو این کتابخانه وجود نداره. همین اتفاق برا Dense هم میفته.
بعد برام جالبه که چرا پنجره intellisence میتونه Sequential رو حدس بزنه
سلام
این باگ مربوط به pycharm هست و در لینک زیر در مورد رفع این مشکل میتونید مطالعه کنید.
https://stackoverflow.com/questions/23248017/cannot-find-reference-xxx-in-init-py-python-pycharm
همچنین میتونید از یک IDE دیگه مثل ژوپیتر استفاده کنید.
استاد اون مشکل حل شد ولی الان ی مشکل دیگ دارم
میگه: ImportError: Keras requires TensorFlow 2.2 or higher. Install TensorFlow via `pip install tensorflow ولی من ورژن tensorflow رو که چک کردم 2.4.4 بود
بعد ی مشکل دیگ از jupyter هم دارم وقتی کدزیر رو وارد میکنم
Model=Sequential()
ارور زیر میاد
---------------------------------------------------------------------------
InternalError Traceback (most recent call last)
<ipython-input-7-9bb8e4584392> in <module>
----> 1 Model=Sequential()
2 Model.add(Dense(12, input_dim=8, activision='relu'))
3 Model.add(Dense(8, activision='relu'))
4 Model.add(Dense(1, input_dim=8, activision='sigmoid'))
F:\Anaconda3\lib\site-packages\tensorflow\python\training\tracking\base.py in _method_wrapper(self, *args, **kwargs)
515 self._self_setattr_tracking = False # pylint: disable=protected-access
516 try:
--> 517 result = method(self, *args, **kwargs)
518 finally:
519 self._self_setattr_tracking = previous_value # pylint: disable=protected-access
F:\Anaconda3\lib\site-packages\tensorflow\python\keras\engine\sequential.py in __init__(self, layers, name)
115 """
116 # Skip the init in FunctionalModel since model doesn't have input/output yet
--> 117 super(functional.Functional, self).__init__( # pylint: disable=bad-super-call
118 name=name, autocast=False)
119 base_layer.keras_api_gauge.get_cell('Sequential').set(True)
F:\Anaconda3\lib\site-packages\tensorflow\python\training\tracking\base.py in _method_wrapper(self, *args, **kwargs)
515 self._self_setattr_tracking = False # pylint: disable=protected-access
516 try:
--> 517 result = method(self, *args, **kwargs)
518 finally:
519 self._self_setattr_tracking = previous_value # pylint: disable=protected-access
F:\Anaconda3\lib\site-packages\tensorflow\python\keras\engine\training.py in __init__(self, *args, **kwargs)
291 self._steps_per_execution = None
292
--> 293 self._init_batch_counters()
294 self._base_model_initialized = True
295
F:\Anaconda3\lib\site-packages\tensorflow\python\training\tracking\base.py in _method_wrapper(self, *args, **kwargs)
515 self._self_setattr_tracking = False # pylint: disable=protected-access
516 try:
--> 517 result = method(self, *args, **kwargs)
518 finally:
519 self._self_setattr_tracking = previous_value # pylint: disable=protected-access
F:\Anaconda3\lib\site-packages\tensorflow\python\keras\engine\training.py in _init_batch_counters(self)
299 # `evaluate`, and `predict`.
300 agg = variables.VariableAggregationV2.ONLY_FIRST_REPLICA
--> 301 self._train_counter = variables.Variable(0, dtype='int64', aggregation=agg)
302 self._test_counter = variables.Variable(0, dtype='int64', aggregation=agg)
303 self._predict_counter = variables.Variable(
F:\Anaconda3\lib\site-packages\tensorflow\python\ops\variables.py in __call__(cls, *args, **kwargs)
260 return cls._variable_v1_call(*args, **kwargs)
261 elif cls is Variable:
--> 262 return cls._variable_v2_call(*args, **kwargs)
263 else:
264 return super(VariableMetaclass, cls).__call__(*args, **kwargs)
F:\Anaconda3\lib\site-packages\tensorflow\python\ops\variables.py in _variable_v2_call(cls, initial_value, trainable, validate_shape, caching_device, name, variable_def, dtype, import_scope, constraint, synchronization, aggregation, shape)
242 if aggregation is None:
243 aggregation = VariableAggregation.NONE
--> 244 return previous_getter(
245 initial_value=initial_value,
246 trainable=trainable,
F:\Anaconda3\lib\site-packages\tensorflow\python\ops\variables.py in <lambda>(**kws)
235 shape=None):
236 """Call on Variable class. Useful to force the signature."""
--> 237 previous_getter = lambda **kws: default_variable_creator_v2(None, **kws)
238 for _, getter in ops.get_default_graph()._variable_creator_stack: # pylint: disable=protected-access
239 previous_getter = _make_getter(getter, previous_getter)
F:\Anaconda3\lib\site-packages\tensorflow\python\ops\variable_scope.py in default_variable_creator_v2(next_creator, **kwargs)
2652 shape = kwargs.get("shape", None)
2653
-> 2654 return resource_variable_ops.ResourceVariable(
2655 initial_value=initial_value,
2656 trainable=trainable,
F:\Anaconda3\lib\site-packages\tensorflow\python\ops\variables.py in __call__(cls, *args, **kwargs)
262 return cls._variable_v2_call(*args, **kwargs)
263 else:
--> 264 return super(VariableMetaclass, cls).__call__(*args, **kwargs)
265
266
F:\Anaconda3\lib\site-packages\tensorflow\python\ops\resource_variable_ops.py in __init__(self, initial_value, trainable, collections, validate_shape, caching_device, name, dtype, variable_def, import_scope, constraint, distribute_strategy, synchronization, aggregation, shape)
1572 self._init_from_proto(variable_def, import_scope=import_scope)
1573 else:
-> 1574 self._init_from_args(
1575 initial_value=initial_value,
1576 trainable=trainable,
F:\Anaconda3\lib\site-packages\tensorflow\python\ops\resource_variable_ops.py in _init_from_args(self, initial_value, trainable, collections, caching_device, name, dtype, constraint, synchronization, aggregation, distribute_strategy, shape)
1715 self._update_uid = initial_value.checkpoint_position.restore_uid
1716 initial_value = initial_value.wrapped_value
-> 1717 initial_value = ops.convert_to_tensor(initial_value,
1718 name="initial_value",
1719 dtype=dtype)
F:\Anaconda3\lib\site-packages\tensorflow\python\profiler\trace.py in wrapped(*args, **kwargs)
161 with Trace(trace_name, **trace_kwargs):
162 return func(*args, **kwargs)
--> 163 return func(*args, **kwargs)
164
165 return wrapped
F:\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py in convert_to_tensor(value, dtype, name, as_ref, preferred_dtype, dtype_hint, ctx, accepted_result_types)
1538
1539 if ret is None:
-> 1540 ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref)
1541
1542 if ret is NotImplemented:
F:\Anaconda3\lib\site-packages\tensorflow\python\framework\tensor_conversion_registry.py in _default_conversion_function(***failed resolving arguments***)
50 def _default_conversion_function(value, dtype, name, as_ref):
51 del as_ref # Unused.
---> 52 return constant_op.constant(value, dtype, name=name)
53
54
F:\Anaconda3\lib\site-packages\tensorflow\python\framework\constant_op.py in constant(value, dtype, shape, name)
262 ValueError: if called on a symbolic tensor.
263 """
--> 264 return _constant_impl(value, dtype, shape, name, verify_shape=False,
265 allow_broadcast=True)
266
F:\Anaconda3\lib\site-packages\tensorflow\python\framework\constant_op.py in _constant_impl(value, dtype, shape, name, verify_shape, allow_broadcast)
274 with trace.Trace("tf.constant"):
275 return _constant_eager_impl(ctx, value, dtype, shape, verify_shape)
--> 276 return _constant_eager_impl(ctx, value, dtype, shape, verify_shape)
277
278 g = ops.get_default_graph()
F:\Anaconda3\lib\site-packages\tensorflow\python\framework\constant_op.py in _constant_eager_impl(ctx, value, dtype, shape, verify_shape)
299 def _constant_eager_impl(ctx, value, dtype, shape, verify_shape):
300 """Implementation of eager constant."""
--> 301 t = convert_to_eager_tensor(value, ctx, dtype)
302 if shape is None:
303 return t
F:\Anaconda3\lib\site-packages\tensorflow\python\framework\constant_op.py in convert_to_eager_tensor(value, ctx, dtype)
95 except AttributeError:
96 dtype = dtypes.as_dtype(dtype).as_datatype_enum
---> 97 ctx.ensure_initialized()
98 return ops.EagerTensor(value, ctx.device_name, dtype)
99
F:\Anaconda3\lib\site-packages\tensorflow\python\eager\context.py in ensure_initialized(self)
509 opts = pywrap_tfe.TFE_NewContextOptions()
510 try:
--> 511 config_str = self.config.SerializeToString()
512 pywrap_tfe.TFE_ContextOptionsSetConfig(opts, config_str)
513 if self._device_policy is not None:
F:\Anaconda3\lib\site-packages\tensorflow\python\eager\context.py in config(self)
928 """Return the ConfigProto with all runtime deltas applied."""
929 # Ensure physical devices have been discovered and config has been imported
--> 930 self._initialize_physical_devices()
931
932 config = config_pb2.ConfigProto()
F:\Anaconda3\lib\site-packages\tensorflow\python\eager\context.py in _initialize_physical_devices(self)
1251 return
1252
-> 1253 devs = pywrap_tfe.TF_ListPhysicalDevices()
1254 self._physical_devices = [
1255 PhysicalDevice(name=d.decode(),
InternalError: failed to get compute capability major for device: UNKNOWN ERROR (1); 0